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Abstract—Ocean observing systems may include a wide variety of sensor and instrument types, each with its own capabilities, 

communication protocols and data formats. Connecting disparate devices into a network typically requires specialized software drivers 

that translate command and data between the protocols of the individual instruments, and that of the platform on which they are 

installed. In addition, such platforms typically require extensive manual configuration to match the driver software and other 

operational details of each network port to a specific connected instrument. In this paper we describe an approach to "plug & work" 

interoperability, using standardized protocols to greatly reduce the amount of instrument-specific software and manual configuration 

required for connecting instruments to an observatory system. Our approach has two main components. First, we use the Sensor 

Interface Descriptor (SID) model, based on the Open Geospatial Consortium's (OGC) SensorML standard, to describe each 

instrument's protocol and data format, and to provide a generic driver/parser. Second, a new OGC standard known as PUCK protocol 

enables storage and retrieval of the SID file from the instrument itself. We demonstrate and evaluate our approach by applying it to 

three commonly used marine instruments in the OBSEA observatory test bed. 

Index Terms— OGC, standards, metadata interoperability cabled observatories, PUCK, SensorML, OBSEA. 

I. INTRODUCTION 

CEANOGRAPHIC instruments are traditionally developed by small companies, with little standardization of the protocols 

used to control and configure the instruments, and to retrieve their data. RS232 and RS485 serial are the dominant physical 

layer protocols (though these may be increasingly displaced by Ethernet), but in general each manufacturer defines its own 

syntax and command sets for its instruments.  
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Those instruments are often integrated into an observing system or sensor network, which provides software infrastructure for 

many useful functions, including instrument data acquisition, data logging, and data transfer to other locations via hard-wired or 

wireless telemetry links. Most observing systems utilize generic or standard protocols for these functions; thus in most cases 

driver software that translates between specific instrument and generic system protocols must be written for each kind of 

instrument (Figure 1). Once written, the driver must be properly configured when the instrument has been physically installed into 

a communication port on the observing system. Driver software development and installation require significant effort by skilled 

software engineers and technicians. Once an instrument is connected to an observing system’s network infrastructure, the next 

challenge is to provide real-time remote access to instrument data via the Internet. Few instruments provide data in a standard 

format - thus observatory or shore-based software is required to transform the instrument data format to a standard form. 

We address these challenges with interoperability standards at multiple levels. Standards minimize the need for software 

development and manual configuration steps, thereby reducing system complexity, development and operational cost. Installation 

and maintenance operations on remote platforms are especially expensive and challenging. Standardizing and streamlining 

installation and operating processes can dramatically reduce costs, as well as the risk of failures due to manual errors. 

Standardization also facilitates easier maintenance and replacement of observatory instruments, and traceability of the data they 

generate. 

 

 

 

 

Figure 1: Accessing instrument’s data requires different instrument driver implementations, due to different instrument proprietary protocols. 
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Figure 2: Simple processes susceptible to standardization. 

a) At Sensor Web Level, b) At Instrument Level 

 

 

 

In short, the ultimate goal is plug & work; upon connection to the observatory network, each device should be automatically 

detected and identified, and should provide all the information necessary for the network to collect and interpret its data, and 

ultimately disseminate them through standard web services.  

In Figure 2 we divide the interoperability problem into two blocks: the instrument level, which includes the interface between a 

device and the network, and the sensor web level, providing the interface between the sensor network and the World Wide Web. 

We present an approach for each level, as well as for interoperability between the two levels, as shown in Figure 3. Our approach 

is based on open standards that are maintained by the Open Geospatial Consortium (OGC). At the instrument level, instrument 

and host controller use OGC PUCK protocol to handle the initial connection to the instrument and to retrieve information stored 

in the instrument about its own identity and configuration. The instrument side of the PUCK protocol can be programmed directly 

into an instrument’s firmware as an extension of its native command set, or implemented through a separate PUCK adapter 

device. PUCK protocol is described further in sections II.B and III.A. 

At the World Wide Web level, the host controller provides various Sensor Web Enablement (SWE) services that allow a data 

user or system operator to control individual instruments and retrieve their data. SWE is described in section II.B. 

Finally, the Sensor Interface Descriptor (SID) model provides a bridge between the instrument and Web levels. Built on the 

OGC SensorML standard, SID is a framework to precisely describe the command protocol and data formats of a particular 

instrument type. A properly constructed SID file - which may be stored in the instrument and retrieved through the PUCK 
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protocol - allows a SID Interpreter on the host controller to control the instrument and parse its data without requiring any 

instrument-specific driver software. We describe SID in section III.B. 

These elements, PUCK, SID and SWE, can be combined to implement plug & work operation of a sensor network.  

 

 

Figure 3 Bridging the interoperability gap between proprietary instrument protocols and standard web services 

 

We tested our approach at the OBSEA Cabled Observatory [1,2]. OBSEA is a seafloor observatory 4 km offshore from 

Vilanova i la Geltrú (Barcelona, Spain), at a depth of 20 m in an area protected from fishing. The cable connection to shore 

provides power to its instruments, and continuous real-time communication through an optical Ethernet network. Figure 4-a is a 

picture of the deployed OBSEA junction box, instruments, and protective enclosure, and Figure 4-b shows a simplified diagram 

of the observatory. 
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Figure 4. a-Western Mediterranean Cabled Observatory OBSEA picture. 

b- OBSEA architecture 

II. BACKGROUND AND RELATED WORK 

A. Interoperability Approaches 

Makers of laboratory instrumentation have pursued various approaches to standardizing instrument interfaces, starting in the 

1960s. For example, IEEE-488 (General Purpose Interface Bus) is a mature and widely used standard defining the physical layer 

and transport protocol for delivering commands and data between instruments and controllers. The industry standard SCPI 

(Standard Commands for Programmable Instrumentation) provides software-level syntax and commands for operating 

instruments over IEEE-488 or other transport protocols, such as Ethernet and USB. 

Instrumentation interoperability has also benefitted from the rapid growth of technology and standards used by personal 

computers, such as PCI (Peripheral Component Interconnect), which has been extended and adapted to form the PXI bus (PCI 

eXtension for Instrumentation). However, these standards were all designed for a laboratory or office environment, and are not 

well suited to the particular demands of underwater measurements. Also, they do not address the specialized measurement types 

found in marine research. 
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Standardization efforts in the marine research community have largely focused on standard formats for data and metadata to 

ensure interoperability between data producers and consumers [26,27,28,29]. NMEA 0183 defines a simple ASCII serial protocol 

consisting of standardized "sentences" that are passed between "talkers" and "listeners" [35]. Many navigational marine 

instruments implement NMEA 0183, but the standard's restrictions to ASCII formats and a 4800 baud serial data bus have limited 

its application to "science" instruments. In terms of metadata formats, most viable standards are based on XML, and use the 

ISO19115 schema for describing geographic information, with some extensions to cover marine data characteristics [30].  

The International Oceanographic Data and Information Exchange (IODE) of the Intergovernmental Oceanographic 

Commission (IOC) of UNESCO promotes XML and ISO19115 for metadata encoding, with the WMO (World Meteorological 

Organization) Core Metadata Profile. 

B. IEEE 1451 

The IEEE 1451 Smart Sensor Interface Standard provides a common communications architecture with sensors over different 

communication protocols at the physical level. Different protocols are addressed by different branches of the standard, for 

example, 1451.2 for RS232, I
2
C, and SPI; 1451.4 for analog sensors, 1451.6 for CAN (controller area network), and so on. This 

standard has not yet been widely used, especially in marine sensors, and is adoption is hampered by a lack of software tools for 

implementation. However, it has some capabilities that may be useful in marine networks. 

Marine instrumentation most commonly uses serial links, so IEEE 1451.2 would apply. However, the version of IEEE 1451.2 

from 1997 is now obsolete due to the complexity of its 10-wire hardware interface, and there are no real industrial 

implementations using this standard. In order to simplify the use of IEEE 1451 for serial instruments, release of a new draft is 

expected in 2011. This new version of IEEE 1451.2 is fully compatible with an RS232 instrument, using the communication and  

measurement services described in IEEE 1451.0. This will allow manufactures to implement the protocol in their new generation 

of instruments. 

Figure 5 shows the main components of an IEEE 1451 standard approach. IEEE 1451 uses the term TIM (Transducer Interface 

Module) to refer to a sensor or actuator, and NCAP (Network Capable Application Processor) to mean a controller interfacing to 

one or more TIMs. In this case, data coming from non-IEEE 1451 instruments are processed to inject data into an IEEE 1451.0 

server [21]. This server publishes data using the HTTP 1451 standard [22] 

One key feature of IEEE 1451 is the definition of a standard transducer electronic datasheet (TEDS). IEEE 1451 specifies 

many standard templates for describing sensors and actuators with a TEDS, and IEEE 1451.4 promotes the idea of storing TEDS 

information within the device itself. The system we describe includes this approach as well, with PUCK protocol used to store 

and retrieve the instrument description, whether as an IEEE 1451 TEDS, or in some other format. 
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Java Distributed Data Acquisition and Control (JDDAC), created by Agilent Technologies Inc. and Sun Microsystems Inc., is 

another related effort that used the IEEE 1451 TEDS. 

 

Figure 5. IEEE1451 HTTP System Architecture with additional non IEEE1451 instruments 

 

In summary, though there have been many incremental steps toward instrument integration as it applies to marine sensor 

networks, there has not been a standards-based architecture that offers practical end-to-end plug & work capability. The 

architecture we describe below demonstrates one possible end-to-end solution using Open Geospatial Consortium Sensor Web 

Enablement (OGC SWE) standards to implement distributed and geospatially referenced sensor networks.  

C. Sensor Web Enablement (SWE) 

The goal of OGC's Sensor Web Enablement is to enable Web-based sharing, discovery, exchange and processing of sensor 

observations, as well as task planning of sensor systems [3,4]. SWE standards make sensors available over the Web through 

standardized formats and Web Service interfaces by hiding the sensor communication details and the heterogeneous sensor 

protocols from the application layer [7]. 

The main Web Services of the SWE framework are the Sensor Observation Service (SOS) and the Sensor Planning Service 

(SPS). The SOS [31,8] provides interoperable access to real time sensor data as well as sensor metadata, while the SPS can be 

used to control and task sensors [32]. A common application of SPS is to define simple sensor parameters such as the sampling 

rate but also more complex tasks such as mission planning of satellite systems. 

Apart from these Web Service specifications, SWE incorporates the OGC Observations and Measurements (O&M) standard 
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information model for sensor data [10], the Observations & Measurements (O&M) [10] standard, as well as OGC Sensor Model 

Language (SensorML) to describe sensor characteristics and processing steps [5]. 

SensorML specifies a model and encoding for sensor related processes such as measuring or post-processing procedures. 

Physical as well as logical sensors are modeled as processes. The functional model of a process can be described in detail with 

SensorML, including its identification, classification, inputs, outputs, parameters, and characteristics such as a spatial or temporal 

description. Processes can be composed of process chains. 

O&M defines a model and encoding for observations: an observation has a result that is an estimated value of an observed 

property, a particular characteristic of a feature of interest. For example, 14°C is an estimated value of temperature at the OBSEA 

observatory. The value of the result is generated by a procedure, e.g. a sensor such as a thermometer described in SensorML. 

These four central components (SensorML, O&M, SPS, SOS) are linked within SWE. 

OGC PUCK protocol is a new addition to SWE, establishing a protocol to retrieve descriptive information from PUCK-

enabled instruments [37]. At a minimum, this includes a formatted electronic datasheet containing information needed to identify 

the instrument manufacturer, model, and unique instance of the model. Optionally, a PUCK-enabled instrument may also carry an 

additional payload with a user-defined format. The optional payload typically includes some or all of the information needed to 

operate the instrument and interpret its data. A host computer that implements PUCK protocol can automatically retrieve and 

used this information from the instrument when the device is installed, as illustrated in Figure 6. This process reduces the number 

of manual steps required for installing the instrument in the network. For example, a SensorML document and instrument driver 

code can be physically stored in the instrument's PUCK memory before deployment. When the host controller connects to the 

network, this information can then be retrieved and used by a host controller to configure the itself and communicate with other 

(SWE) services.  

 

 

 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

 

Figure 6: Relation between OGC SWE services, SensorML, and OGC PUCK 

III.  A STANDARDS-BASED ARCHITECTURE FOR THE AUTOMATIC INTEGRATION OF MARINE SENSORS 

 

In this section we describe how we use SWE standards combined with SID to implement automatic integration of marine 

instruments into a network.  

 

A. Instrument Level: PUCK protocol 

Figure 7 schematically shows components of a typical marine instrument. The instrument's embedded microprocessor is 

physically connected via I/O channels to transducers and sensors, as well as to an external physical interface (such as RS-232 or 

Ethernet). PUCK protocol currently supports EIA232 (aka "RS232") or Ethernet physical/electrical interface. The 

microprocessor executes algorithms within its embedded "firmware" which retrieve data from the sensors and may process the 

data further. The firmware also implements a command protocol on the external interface; an application running on an external 

host computer can use the protocol to configure the instrument, retrieve its sensor data, and get a description of the instrument 

characteristics and state.  
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Figure 7 Simple block diagram of an Instrument 

 

Thus the host application includes instrument driver software that communicates on the appropriate physical port using the 

specific instrument protocol. The application also must "know" the instrument's data and metadata formats in order to process the 

data further. Oceanographic instruments most commonly provide an external RS232 serial interface, which is compatible with the 

limited power, limited number of wires, and long cable lengths associated with many marine applications. In the RS232 case, the 

instrument driver must also be configured to use the proper baud, parity and stop bits to communicate with the device. Instrument 

manufacturers often provide a driver for use in a desktop environment (e.g. for Microsoft Windows), but often a driver that can 

be run in non-desktop environments is needed, e.g. on an ARM-based Linux instrument controller. Thus several steps are needed 

to install an instrument into an observing system: 

 For new kinds of instruments, an instrument application and driver must be developed for the host, utilizing the specific 

protocol and formats to command the instrument and process its data 

 The instrument must be physically installed into a host port, 

 The driver must be installed on the host, and configured to use the correct port at the correct baud rate  

 

OGC PUCK protocol (section II.B) enables automatic system configuration when the instrument is plugged into the host. Figure 

8 depicts a block diagram of an RS232 PUCK-enabled instrument, and the possible interactions from the standpoint of a host 

controller. 
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Figure 8 Serial Puck Instrument Model 

 

A PUCK-enabled RS232 instrument can operate in “instrument mode” or “PUCK mode”. In instrument mode, the device 

responds to the protocol defined by its manufacturer, including "non-standard" commands. While in PUCK mode, the device 

responds to the standard PUCK protocol. PUCK mode is typically used when the instrument is first connected to the host or the 

host is rebooted. To switch a PUCK-enabled device into PUCK mode, a “PUCK soft break” command is sent to the device at 

several baud rates until a valid PUCK response is received by the host as shown in Figure 8. While in PUCK mode the host can 

retrieve the PUCK datasheet and any optional payload information, from which the host can infer the instrument model and 

manufacturer. The host then switches the device into "instrument mode" and begins issuing instrument-specific protocol 

commands to it. 

  

Modern cable-to-shore observatories such as OBSEA are not as power-constrained as buoy-based systems and standard Ethernet 

is an option for instrument interfaces. Likewise low-power Ethernet is now available even for buoy-based applications [23]. For 

these instruments, the OGC PUCK standard specifies PUCK over IP ("IP PUCK"). In addition to basic PUCK protocol, IP 

PUCK specifies the existing Zeroconf standard as a means to automatically assign the instrument's link-local IP address and 

hostname, and a mechanism for hosts to discover the instrument address and “PUCK port” number [14]. Thus an IP PUCK 

instrument can automatically acquire an IP address and name when it is physically installed into the network. A host can then use 

Zeroconf's service discovery protocol to discover PUCK-enabled instruments in the marine IP network and retrieve their 

metadata and payloads using PUCK commands issued to the instrument's specified "PUCK port". Figure 9 depicts a block 

diagram of an IP PUCK-enabled instrument, and the component system protocols: Zeroconf, OGC PUCK protocol, and the 

instrument proprietary protocol. Figure 9 also shows the possible interactions with a host device connected in the same network. 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

12 

 

Figure 9 IP Puck Instrument Model 

 

 

An implementation of IP PUCK has been developed on the Stellaris ARM® Cortex-M3™-based microcontroller, LM3S9B96 

[13]. This "Smart Sensor Board ("SSB") has been designated as a standard oceanographic instrument platform by the French 

Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) [18]. The device includes serial ports for RS232 

instruments, and can include embedded sensors as well. In either case a host can automatically detect the SSB in the network with 

ZeroConf and retrieve the instrument information using PUCK protocol. In this implementation, the unique instance name 

advertised by Zeroconf discovery protocol is derived from the PUCK datasheet, and consists of instrument manufacturer, model 

and serial number. 

 

The PUCK standard designates "PUCK payload" as an optional feature, as the available memory in some instruments may be 

very limited. In such cases, an observing system can provide an external database of information that would otherwise be stored 

in PUCK payload. A host computer can then retrieve the relevant information from the database, using the PUCK UUID 

retrieved from the instrument as a database key. 

B. Data Integration Level: Sensor Interface Descriptors (SID) 

A system for integrating data from an arbitrary set of instruments must accommodate a wide variety of protocols. Each 

instrument's protocol includes the commands used to trigger its collection and transmission of data, and the formats in which data 

are returned. As noted in section I, there is virtually no standardization of protocols among different manufacturers or types of 

instruments. Because of this, significant effort is required to develop and maintain instrument driver code across different 
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software platforms; Sensor Interface Descriptors help to mitigate this by defining a generalized and platform-independent 

encoding of instrument protocols. 

Some instruments return data in a nominally human-readable format, typically ASCII-encoded decimal numbers separated by 

commas or tab characters. However there are many other formats, with varying degrees of complexity, tailored to the 

characteristics of each instrument. These may include fields defined by a fixed or delimited formats, and binary encoding of 

various integer and floating-point number types. Different data fields within a packet may be encoded differently. A single 

instrument may also produce multiple packet formats within the same data stream. For example, an instrument may report 

"housekeeping" data in separate packets, and at different rates, from its primary measurement data. The contents of a data field 

could even indicate the length or format of subsequent data within the same packet. 

Instruments also vary in the way that data output is triggered; some stream data continuously (with or without initial prompting 

from the host), while others must be polled.  

 The proposed Sensor Interface Descriptors (SID) standard provides a framework for generalized descriptions of protocol 

features. While SID does not accommodate every possible variation, it does encompass a wide variety, covering the majority of 

protocols used in ocean observing systems today. 

The architectural principle of a system infrastructure incorporating the SID concept as defined by Bröring et al. (2010) [6] is 

shown in Figure 10. An instrument communicates with a data acquisition system in its specific protocol over a transmission 

technology such as RS232 or Ethernet. The instrument can also act as a gateway (network sink) so that other nodes of a (possibly 

mobile) sensor network communicate with it. The SID Interpreter runs on the host controller and uses SID instances for the 

different instruments of the sensor network to translate between the specific instrument protocol and the protocols used on the 

application level, e.g. the protocols of the Sensor Web Enablement (SWE) suite of standards (Section II.B). The interpreter is 

responsible for registering an instrument at the application (e.g. an SWE Sensor Observation Service) and to upload the measured 

data. It is also responsible for the opposite communication direction, to forward tasks from an application (e.g. a SWE Sensor 

Planning Service) to an instrument. 
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Figure 10: Connection of a sensor to SWE services through an SID Interpreter. 

1) The SID Model 

A strong requirement of the design of the SID model [10] is the strict encapsulation of the SID within a SensorML document. 

The SID part of the SensorML document is specific for a certain instrument type, not a particular instrument instance. Hence, an 

encapsulation allows reusing the SID in the SensorML descriptions of different instruments that are of the same type. The 

approach developed here, encapsulates the SID within the InterfaceDefinition element of a SensorML document. 

The InterfaceDefinition element contains a stack of layers (Figure 11), aligned with the Open System Interconnection (OSI) 

reference model. In contrast to the OSI model, SensorML does not further define how to use these layers. The SID model uses 

this layer stack to describe the instrument interface. 
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Figure 11: Excerpt of SensorML schema (beige colored types) including the SID extension (blue colored types). 

 

A definition of the raw instrument protocol exchanged between instrument and data acquisition system is essential. The 

structure of these raw data is described within the lowest, the physicalLayer element. As shown in Figure 11, new elements for 

the data input and data output stream are attached to this element. The two elements are necessary to support duplex 

communication with instruments. 

The dataLinkLayer, networkLayer, transportLayer, and sessionLayer define the processing steps that are necessary to translate 

between the instrument protocol and the target protocol. To allow data processing between the instrument and application, 

elements for data decoding and encoding are added to each layer (Figure 11). Instances of these elements contain descriptions of 

applied processing steps. Here, the SID model reuses existing SensorML types to define processes with its inputs, outputs, 

parameters and its computational method. 

The encoding of an instrument data stream into target protocols typically uses the SID layers in this way: the data link layer 

specifies a process for character escaping, the network layer computes a checksum validation, the transport layer transforms the 

raw data to observations by applying an interpolation, and the session layer computes a date conversion. 

The data resulting from the preceding processing steps have to be associated with certain metadata needed by the target 

protocol, e.g. the SWE Observation and Measurement (O&M) protocol. The measured data need to be associated with units of 

measure. Further, the data need to be linked to the core SensorML measurement concepts, the observed property and the feature 

of interest. 

While the association of the data with a unit of measure is done on the presentationLayer, the link to observed property and the 

feature of interest is established in the outputs element of the SensorML document. This outputs element is not part of the SID, 

since it is not a sub-element of the InterfaceDefinition (Figure 11). The information contained in the outputs element is 

intentionally kept out of the SID, since the linkage of an instrument to feature of interest and observed property is dependent on 

the particular use case, not the interface of the instrument type. By not including this information in the SID, it is possible to reuse 

the SID in different applications; i.e. SID enables interoperability because it is platform-independent.. 

The application layer of the OSI model describes interfaces to access the OSI stack. Consistent with this view, the 

applicationLayer is used here to define the commands accepted by the instrument. As shown in Figure 11, the command element 

contains sub-elements to describe possible instrument responses, the pre- and post-conditions for executing the command, as well 

as the command parameters. 
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2) The SID Creator 

The creation of the SID file (SensorML and contained SID code) without tool support is tedious and error-prone, since plain 

XML has to be written by hand. For this reason, the visual SID Creator has been developed by Bröring et al. 2011 [9], which 

enables a semi-automatic generation of SID instances. 

Implemented in Java, the SID Creator allows the description of an instrument protocol by following a wizard-style user 

interface. First, the user provides basic metadata about the instrument, such as identification, a human readable name and 

description. The metadata are used to compose SensorML tags when the SID file is generated. Since SensorML is generic and 

does not explicitly specify where to put this information, a public profile of SensorML that is optimized for discovery of 

instruments [11] is applied to encode these data. 

Next, the wizard enables the definition of the instrument protocol. The user can define how the SID Interpreter physically 

connects to the instrument (e.g., RS232, or Ethernet). Further, the structure of ASCII based protocols can be described. For 

example, the separator symbols are defined; these are utilized by the protocol to parse blocks, fields within a block and decimal 

numbers. The SID Creator may be used to specify multiple blocks within the data stream coming from the instrument. An 

example of such a block within a data stream is given in Listing 1. 

 

…#thermometer123|2010-09-02T13:05|22.34|C#… 

List. 1 - A single block within a data stream. 

 

The block is identified by the value of its first field, thermometer123 in case of Listing 1. This block ID is also specified in the 

wizard to be stored in the SID file. Further, three fields are added to the block. The second field is the value of the measured data. 

Finally, this field is referenced as the actual sensor data output. The values of this field are uploaded to the application. The 

wizard generates a complete SensorML description for the instrument containing the user-defined SID element. Table 6 shows in 

detail the inputs to each page of the SID Creator for describing the interface of the Seabird SBE-37SM instrument. 

Implementations of the SID Interpreter and SID Creator are available as open source software from 52°North 

(http://52north.org/sid). 

 

C. Combining PUCK and SID 

Combining SID and PUCK enables plug & work capability without the need create platform-specific instrument driver code. 

As described above, SID provides a standard description of a particular instrument’s native protocol, including the commands to 
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configure the instrument and trigger data acquisition. If the instrument also recognizes PUCK protocol, the instrument-specific 

SID file could either be stored in the instrument’s PUCK payload, or stored in an external database keyed to PUCK UUID. We 

have tested this approach, and describe our results below. 

If the instrument and host computer are connected with RS232, the host computer runs a "PUCK detector" algorithm to 

automatically detect when a new PUCK-enabled instrument is plugged into a serial port and to respond accordingly. This 

detection protocol is shown in Figure 13. The PUCK detector periodically interrogates the serial port for a PUCK-enabled 

instrument via the PUCK "soft break" command. When the host receives a PUCK response from the serial port, the host retrieves 

the 96-byte PUCK datasheet and examines the UUID to determine if a new instrument has been installed. If so, the host retrieves 

the SID file either from the instrument’s PUCK payload or from an external database keyed to PUCK UUID, and configures a 

new SID Interpreter with the appropriate SensorML, serial port name and serial baud rate. Finally the SID Interpreter begins to 

retrieve data samples from the instrument at the sampling frequency specified in the instrument's SID file. 

 

 

Figure 13 Automatics serial puck detection process diagram and SID enable 

Figure 14 shows the detection algorithm for IP PUCK instruments. A Zeroconf mDNS browser runs on the host, and is capable 

of discovering all IP PUCK instruments in the local network. When the browser finds an IP PUCK instrument, the host reads the 

IP address and TCP "PUCK port" number of the service from the ZeroConf DNS record, retrieves the 96-byte PUCK datasheet 

and examines the UUID to determine if this instrument was previously installed. If not, the host retrieves the SensorML and SID, 

and uses them to configure a new SID Interpreter. Finally the SID Interpreter acquires data from the instrument at the frequency 

specified by the SID. 
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Figure 14. Automatics IP puck detection process diagram and SID enable 

 

IV. IMPLEMENTATION 

We implemented a prototype plug & work observatory based on the architecture described in the previous section. The prototype 

was demonstrated at the general assembly meeting of the ESONET EU funded project in December 2010 in Marseille (France) 

[33]. 

 

A. Prototype Architecture 

Figure 15 shows the main components of the prototype architecture. The objective of the prototype is to access data generated 

by instruments (1,2,3), connected to a host controller (5) through standard Internet clients (6,7) without any manual configuration 

steps at installation or run time. Instruments 2 and 3 are PUCK-enabled serial devices; the SID describing the instrument protocol 

and data formats is stored within the PUCK payload (8) of its corresponding instrument. The host controller (5) is implemented 

by an Internet-connected Windows laptop computer, and hosts several software components: 

9a) A PUCK detector is assigned to each serial port, issuing a PUCK "soft break" at different baud rates until it receives a 

PUCK response from an attached instrument. If the detector determines that the instrument is newly installed based on its UUID, 

the SensorML and SID are either retrieved from the instrument's PUCK payload or from the SID repository, and a new SID 

Interpreter is created (9b).  The SID Interpreter executes the initialization and sampling protocol declared in the SID. Data 

coming from the instrument will be parsed with the data format declared by the SID and processed (if necessary). These data can 

be sent to higher-level data management components on the network.  
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Table 1: Instruments used with interoperability prototype and SID URLs 

 

Our prototype uses the open source 52°North SOS (Sensor Observation Service) (11) and SOS client (6) to distribute the data. 

The data are also sent to a Data Turbine Ring Buffer [24, 25] (12), for real-time data access through the Internet using the RDV 

Client (7). 

 The instrument SID files are generated beforehand with the SID Creator. As noted earlier, SID files can be reused for 

instruments of the same type. Before the instrument  is deployed, the SID file is stored either in the instrument's PUCK payload or 

in an external SID Repository (13) database that is keyed to PUCK UUID. If the SID file is stored in the instrument’s PUCK 

payload, the PUCK detector (9a) will retrieve the SID payload from the instrument once connected, and store it in the SID 

Repository (13). The SID Interpreter (9b) is then invoked for the instrument’s SID payload. If the instrument does not have a SID 

payload, the PUCK detector (9a) using the instrument UUID will locate the proper SID file in the repository before invoking SID 

Interpreter. Below we describe our observing system implemenation that used SID to connect to an OGC Sensor Observation 

Service. 

B. Instruments 

We tested our prototype with several oceanographic instruments, as shown in  

. Most of the PUCK-enabled devices provide optional PUCK payload, in which we stored the appropriate SID and SensorML. 

The PUCK-enabled WET Labs fluorometer does not support a payload, so we implemented a simple external database or "SID 

Repository" in which we stored SID files, keyed to PUCK UUID. 

Instrument 

Link 

layer 

PUCK-

enabled? 

Provides 

PUCK 

payload? 

Data format 

used 

Link to SID 

Seabird SBE-16+ CTD on 

Smart Sensor Board 

Ethernet 

via Smart 

Sensor Board 

via Smart 

Sensor Board 

comma-delimited 

ASCII 

http://52north.org/communities/sensorweb/example

s/2011-07-28-Seabird-SBE-16P-3out.xml 

Seabird SBE-37SM RS232 yes yes 

comma-delimited 

ASCII 

http://52north.org/communities/sensorweb/example

s/2011-03-18-Seabird-SBE-37.xml 

 HOBI Labs HydroScat-2  RS232 no no 

comma-delimited 

and fixed-width 

ASCII 

http://52north.org/communities/sensorweb/example

s/2010-11-18-Hobilabs-HydroScat.xml 

WET Labs ECO Triplet  RS232 yes no 

space-delimited 

ASCII 

http://52north.org/communities/sensorweb/example

s/2010-11-10-WETlabs-Triplet.xml 

RBR XR-420 CTD RS232 yes yes 

space-delimited 

ASCII 

http://52north.org/communities/sensorweb/example

s/2011-03-18-RBR-xr420.xml 

http://52north.org/communities/sensorweb/examples/2011-07-28-Seabird-SBE-16P-3out.xml
http://52north.org/communities/sensorweb/examples/2011-07-28-Seabird-SBE-16P-3out.xml
http://52north.org/communities/sensorweb/examples/2011-03-18-Seabird-SBE-37.xml
http://52north.org/communities/sensorweb/examples/2011-03-18-Seabird-SBE-37.xml
http://52north.org/communities/sensorweb/examples/2010-11-18-Hobilabs-HydroScat.xml
http://52north.org/communities/sensorweb/examples/2010-11-18-Hobilabs-HydroScat.xml
http://52north.org/communities/sensorweb/examples/2010-11-10-WETlabs-Triplet.xml
http://52north.org/communities/sensorweb/examples/2010-11-10-WETlabs-Triplet.xml
http://52north.org/communities/sensorweb/examples/2011-03-18-RBR-xr420.xml
http://52north.org/communities/sensorweb/examples/2011-03-18-RBR-xr420.xml
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The instruments implement a variety of data formats, and some offer multiple options. For purposes of the prototype testing, 

we used delimited ASCII for instruments that supported it. We defined instrument-specific SIDs and SensorML documents for 

the instruments in  

, using the SID Creator described previously. The SID files are available online at the locations shown in  

. In order to illustrate the variety of instrument response formats, the following tables (Table 2-5) show example data delivery 

messages for the different instruments listed in  

 and which have been described with SID files.  

 

 

Table 2: Example response of SBE-37SM instrument 

Response to "TS" command: Delimiter: comma 

20.8397, 0.00006, 0.028, 0.0103, 1484.920, 01 Jan 1980, 

00:00:01<CR><LF>  

tokens: temperature (deg C), conductivity (siemens/meter), pressure 

(decibar), salinity (psu), sound velocity (meter/sec), dd mmm yyyy,: 

hh:mm:ss 

 

Table 3: Example response of RBR instrument 

Response to "F00" command: Delimiter: space 

TIM 000302213620 -0.0042 20.7903 10.5324 FET 

tokens: "TIM" (fixed marker), YYMMDDhhmmss, conductivity (mS/cm), 

temperature (deg C), pressure (decibar), "FET" (fixed marker) 

 

Table 4: Example response of WET Labs Triplet 

Response to "$run" command: Delimiter: space 

08/04/11        14:44:28        4996    13896   17333 

08/04/11        14:44:28        16777   13896   17333 

08/04/11        14:44:29        16777   13896   17333 

tokens: date (mm/dd/yy), time (hh:mm:ss), chlorophyll (counts), 

backscatter1 (counts), backscatter2 (counts) 

 

Table 5: Example response of HOBI Labs HydroScat-2 

Response to "C" command: Delimiter: comma. 

2355,1904,1601,2472,1471,1860,1686,2950,1754,1663,1653,2472,1471,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,5,5,5,3,3,3,3,3,177,2677,
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0,128,116<CR><LF> 

tokens: Time elapsed since, signal1, sigOffset1, reference1, refOffset1, 

signal2, sigOffset2, reference2, refOffset2,... <unused channels> ... 

<housekeeping data> ... pressure, 0, temperature, battery voltage. 

C.  Configuration Example: Seabird SBE-37SM 

As a common marine instrument type, the configuration of the Seabird SBE-37SM is described in further detail. This 

instrument measures water conductivity, temperature and pressure. From these parameters it also computes and outputs salinity, 

depth and sound propagation speed (see Table 2). The command used to collect ocean data samples with the Seabird CTD is an 

ASCII command type “TS” followed by a carriage return.  

Listing 2 shows an excerpt of the SID created for the Seabird sensor. In the application layer of the SID, the “TS” command is 

stated (<swe:DataRecord gml:id="TS">). It is defined that it is automatically executed in an interval of 5 seconds to regularly retrieve the 

sensor’s measurements (<sid:command name="getDataCommand" auto="true" interval="5">). Further, Listing 2 contains parts of the description of 

the Seabird’s response to the TS command: the message containing measured data values. As described in section III.B.2, here 

the structure definition of the protocol takes place by declaring which blocks and fields are contained in the message coming from 

the instrument. In this case, the instrument response uses character “comma” to separate each token and a carriage return is used 

to identify the end of instrument responses  (<swe:TextBlock tokenSeparator="," blockSeparator="&#x000D;" decimalSeparator="."/>). 
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Listing 2 Seabird 37SMP response description and SID File excerpt representation 

<sml:applicationLayer> 

  <sid:CommandDefinition> 

    <sid:commands> 

      <sid:CommandList> 

        <sid:command name="getDataCommand" auto="true" interval="5"> 

          <sid:Command> 

            <swe:DataRecord gml:id="TS"> 

              <swe:field name="command" xlink:role="urn:ogc:def:command:OGC:name"> 

                <swe:Text> 

                  <swe:value>TS</swe:value> 

                </swe:Text> 

             </swe:field> 

.. 

<sml:physicalLayer> 

  <sid:DataOutputStream> 

    <dataOutputComponents> 

      <ComponentList> 

        <component> 

          <swe:DataBlockDefinition> 

               <swe:DataRecord> 

                 <swe:field name="time" /> 

                 <swe:field name="conductivity" /> 

                 <swe:field name="pressure" /> 

                 <swe:field name="temperature" /> 

               </swe:DataRecord> 

             <swe:encoding> 
               <swe:TextBlock tokenSeparator="," blockSeparator="&#x000D;" decimalSeparator="."/> 

            </swe:encoding> 

         </swe:DataBlockDefinition> 
 

The SID Creator wizard creates the SID file (Listing 2) from user-specified parameters describing the instrument and its 

protocol. Table 6 shows the inputs to each page of the SID Creator for describing the interface of the SBE-37SM. The pages for 

structure and task definition describe the structure of the data delivery command and response as shown in Table 2. The metadata 

definition page allows defining the fields of the data stream. The fields are further processed by the SID Interpreter and uploaded 

to an application (e.g., to a Sensor Observation Service). In this way, the values of those fields become associated with metadata 

such as an observed property and unit of measure. 
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Table 6: Inputs to the SID Creator wizard pages to describe the SBE-37SM protocol 

Page SID Creator Input Values for SBE-37SM 

Structure 

Definition 

Transmission 

Protocol RS232 

Block separator <CR><LF>  

Token separator , 

Decimal separator . 

Block 1 - Fields temperature 

conductivity 

pressure 

salinity 

sound_velocity 

dateTime 

Task 

Definition 

Command 1 getDataCommand 

- Parameter Value TS 

Metadata 

Definition 

Output 1   

- Field Name temperature 

- Observed property 

http://sweet.jpl.nasa.gov/2.1/-

propTemperature.owl#Temperature 

- Unit of measure Cel 

Output 2   

- Field Name pressure 

- Observed property 

http://sweet.jpl.nasa.gov/2.0/- 

hydro.owl#WaterPressure 

- Unit of measure bar 

Output 3   

- Field Name salinity 

- Observed property 

http://sweet.jpl.nasa.gov/2.0/- 

chemConcentration.owl#Salinity 

- Unit of measure ppth 

 

Although Seabird offers PUCK-enabled instruments, our Seabird SBE-37SM CTD does not natively implement the PUCK 

protocol; rather, it is connected to a serial port on the IP PUCK Smart Sensor Board (SSB) (4), which communicates over a LAN 

with the Host Controller (5). We stored the CTD SBE-37SM SID file in the SSB's PUCK payload. When the SSB is plugged into 

http://sweet.jpl.nasa.gov/2.1/-propTemperature.owl#Temperature
http://sweet.jpl.nasa.gov/2.1/-propTemperature.owl#Temperature
http://sweet.jpl.nasa.gov/2.0/-hydro.owl#WaterPressure
http://sweet.jpl.nasa.gov/2.0/-hydro.owl#WaterPressure
http://sweet.jpl.nasa.gov/2.0/-chemConcentration.owl#Salinity
http://sweet.jpl.nasa.gov/2.0/-chemConcentration.owl#Salinity
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the network, it uses Zeroconf to automatically acquire a link-local address and name. The host controller (5) uses Zeroconf 

service discovery protocol to find the IP PUCK instrument in the network by means of the ZeroConf Browser (10a). When a new 

IP PUCK instrument is detected, the PUCK reader (10b) retrieves the instrument SID file from the SSB (4) and uses it to create 

new instance of an SID Interpreter (10c). The SID Interpreter subsequently generates instrument commands to trigger data 

acquisition, parses the instrument data and exports the parsed data to an SOS (6) and/or DataTurbine (7). A demonstration of the 

IP PUCK SSB is available on the World Wide Web [36]. 

 

 

Figure 15 Sensor Web Enablement Architecture using PUCK protocol and SID 

 

 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we identify a gap of interoperability between the variety of manufacturer specific instrument protocols and 

applications that need to access and use sensor data. To tackle this challenge, we have presented a software architecture for 

enabling end-to-end plug & work of sensor instruments with information infrastructures. By combining the standardized PUCK 

protocol and the SID concept, a promising way for automated instrument integration has been designed. We have demonstrated 

this new approach using instruments connected to the OBSEA test bed.  
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The developed architecture automates the detection, identification, configuration and execution of measuring operations at 

instrument level (Figure 1). In combination with OGC’s SWE standards, it realizes the discovery, access, tasking and alerting on 

the sensor web level. Automating the interaction with the instrument and standardizing the representation of instrument protocols 

greatly reduces the costs and problems associated with writing and configuring instrument drivers. The PUCK protocol provides 

standard methods for the detection of a new instrument once plugged into a host controller or into a network, and identification 

via the PUCK payload. The combination of SID and PUCK enables an SID Interpreter to automatically configure and execute 

measurement operations. Coupling the SID Interpreter with SWE services enables the export of instrument data to the sensor 

web,  closing the gap between the sensor web level and the instrument level. 

With those concepts in place, we designed a framework that allows the development of tools, such as the SID Creator (section 

IV.B.2), which significantly decrease the administration efforts for integrating instruments with ocean observing systems. 

In future, we will particularly focus on solving limitations of the current SID Interpreter implementation, which does not yet 

cover the full SID model, and we will also extend the SID specification itself to support a broader variety of instrument protocols. 

Examples of not yet supported protocols are fixed-width (e.g. HOBI Labs HydroScat) formats, delimited variable-length data 

records, or instruments that generate multiple data record formats. In these cases, the structure of each data record is usually 

indicated by a “record type” field in a “record header”. A new implementation of the SID Interpreter is planned which tackles 

those limitations and is also lightweight enough to be deployed on limited embedded environments, e.g., on a low-powered buoy 

controller. 

Another concept we plan to evolve is the repository for SID files. While in the presented architecture a basic local repository 

was sufficient, in future, global and publicly accessible repositories for sensor interface descriptions shall be established. Such 

repositories can act as platforms for instrument manufacturers and users to exchange their knowledge on instrument protocols. As 

a web service, a SID repository could be incorporated in the suite of SWE specifications, comparable to but extending the 

existing Sensor Instance Registry [34]. 
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