
Development of Sensor Web Applications with Open Source Software
Arne Bröring1,

Eike Hinderk Jürrens1,
 Simon Jirka1,

Christoph Stasch2

1 52° North Initiative for Geospatial Open Source Software GmbH
{broering, ehjuerrens, jirka}@52north.org

2 Institute for Geoinformatics, University of Muenster
staschc@uni-muenster.de

Abstract
When developing client applications for OGC Web services, it is necessary to implement connectors that are able to
interact with the according service interfaces. Since the interaction with OGC Web services is standardized and thus
common for multiple client applications, the open source initiative 52°North started in 2006 the development of the
OX-Framework – a software framework whose architecture can be used to ease and encapsulate the utilization of
OGC Web Services. This framework has gained maturity in the past years and has recently been used as the
technological basis for innovative Sensor Web applications in several projects. This work gives an overview of the
framework’s architecture and subsequently presents examples of open source Sensor Web applications built on top of
it.

Introduction
The importance of sensor networks for capturing (real-time) information about phenomena has grown continuously
within the last few years. Besides sensor networks which have been in use for very long time periods (e.g. weather
station networks) new technologies and especially the miniaturisation of electronics has lead to a widespread use of
often embedded sensors. The availability of such a broad base of sensor data offers the possibility to integrate real-
time or near real-time measurements with conventional geospatial data (e.g. maps or geometries) for visualisation
purposes and for enhancing processing and simulation models.
However, in order to make practical use of sensors it is important to integrate sensor data and metadata as well as
functionality into application systems. Especially the heterogeneous character of sensor interfaces makes this a very
challenging tasks. In order to facilitate this integration a framework consisting of interface and data formats has been
developed by the Open Geospatial Consortium: The Sensor Web Enablement (SWE) framework (Botts et al. 2006).
The SWE framework consists of a set of standards that define data formats for sensor data and metadata and web
service interfaces for providing sensor related functionality. Fig. 1 shows an overview of the components forming the
SWE architecture.

As fig. 1 illustrates the SWE framework can be
divided into two parts: the service model defining
the interfaces of sensor related web service types
and the information model comprising those
standards which address the specification of data
formats. The service model comprises the
following four standards: the Sensor Observation
Service (SOS) for accessing data measured by
sensors (Na&Priest 2007), the Sensor Alert
Service (SAS) for dispatching alerts if sensor data
fulfil certrain user defined criteria (Simonis
2006), the Sensor Planning Service (SPS) for

controlling sensors and setting sensor parameters (Simonis 2007) and finally the Web Notification Service (WNS)
which can be seen as a helper service enabling asynchronous communication between SWE components
(Simonis&Echterhoff 2006). In the SWE information model the following data formats are defined: SWE Common as
a basic data format defining common elements that are re-used by the other SWE standards, Observerations and
Measurements (O&M) for encoding data measured by sensors (Cox 2007), the Sensor Model Language (SensorML)
for representing the metadata of sensors (Botts 2007) and the Transducer Markup Language (TML) as a hybrid
encoding for sensor data and metadata which is especially optimized for streaming data (Havens 2007).

Fig.1: Overview of the OGC SWE framework

In summary, the SWE framework provides a comprehensive and stable framework that allows building applications
that are based on sensors and sensor data. The visualisation of sensor data in conjunction with other geospatial data or
results of processing steps is a core element of most sensor web applications. Only by offering well designed and
usable client applications a practical benefit for end users is generated.
In this paper, we will address the topic of building client applications that make use of the different SWE standards. In
the next section we introduce the 52° North OX-Framework which facilitates the development of SWE based client
application by providing a layer that encapsulates all interactions between SWE services and clients.

The OX-Framework
As nowadays different types of geospatial data are available on different sources through OGC Web Services, the
interest to integrate them is demanding. This is due to the fact that to carry out reliable decisions different types of
data from various sources are required. Thus, a generic framework is needed, which enables integration of these Web
Services. Though a number of approaches are available to support users on a rather abstract level (most of the GI-
software providers offer so called suites or portal solutions), support for software developers is hard to find.
Tillman & Garnett (2006) support this integrative notion of OGC Web Services, but only by focussing on client
applications. As the integration of Web Services on service side is also demanding especially in the context of
sophisticated web processing and service chaining (Kiehle et al. 2006), we propose an integrative approach for both
environments. Such an extended approach towards service applications would support the development of
sophisticated service chains and decrease the complexity of OGC-based software development.
However, until now only specific frameworks are available, either as pure client solutions, such as uDig
(http://udig.refractions.net), or as pure service solutions, e.g. deegree (http://deegree.sourceforge.net/). A generic
solution is still missing. The proposed framework offers developers a customizable and extendable system of
cooperating classes supplying a reusable design which is applicable for client and server applications.
Looking from the perspective of the Sensor Web Enablement initiative, different sensors and other support data are

required to extract reliable information. This case
was the driving force for the SWE Working Group
within the 52°North Open Source initiative (http://
www.52n.org; Kraak et al. 2005) to come up with
an integrated framework named the OGC Web
Service Access Framework (OX-Framework).
The aim of the OX-Framework is to provide an
integrative view to access all kinds of OGC Web
Services and thereafter to visualize and process the
queried data. The variety of different services and
data encodings makes it necessary to build up a
flexible architecture. The OX-Framework supports
this flexibility by applying three design concepts: a
Three Tier Architecture, a Plugin Mechanism as
well as a Listener Concept. Those different design
aspects are described below.
The Tier Architecture reduces the complexity of
the OX-Framework by structuring it into three
layers as shown in fig. 2: Adapters Subsystem,
Core Subsystem and Utilities Subsystem.
The Adapters Subsystem contains realizations of

Service Adpaters for specific OGC Web Services (e.g. SOS). These adapters provide common facilities to the Core for
service access in the form of Service Connectors, data visualization engines (Renderers) and feature unmarshalling
(Feature Stores).
The Service Connector initializes the Common Capabilities Model of the particular service type and is able to trigger
its operations. The Renderer converts the received data to a graphical representation. The Feature Store provides
unmarshalling facilities for received feature data to the Core's Feature Model. All the Service Adapters communicate
with each other through the Core. This communication is enabled by common data models, which reflect the
integrative approach of the OX-Framework.
In detail, the Core incorporates a three-folded data model: The Common Capabilities Model implements the OWS
Common Specification (Whiteside 2005) and introduces thereby the integrative view on service access to the
architecture. The Feature Model provides a basis for accessing, visualizing and processing of vector data based on
(Reynolds 2005; Kottman 1999). The Context Model enables persistence and exchange functionality for client

Fig. 2: Three Tier Architecture

projects. It maps a user session – so called “Context” - to an XML-
encoding compliant to the Web Map Context Documents specification
(Humblet 2003).
The Utilities Subsystem provides functionality for specific UI-
frameworks (e.g. Struts or Swing). Those components help the user of
the OX-framework to build up client applications or new services using
the framework for service-chaining.
The Plugin Mechanism enables the developer to customize and extend
the framework with the required Service Adapters in a dynamic way.
Hence, it is possible to build up client- and service-oriented applications

with the OX-Framework. The idea of this concept is outlined in fig. 3. Implementations of Service Adapters for
different OGC service types are plugged into the OX-Framework. The various applications build on top of it can reuse
the plugins.
Additionally, the Listener Concept is an important feature of the OX-Framework because it affords a high degree of

extensibility and transparency which endows the developer with the absolute control over the framework. Fig. 4 shows
exemplarily the functionality of the Listener Concept.
The GUI element displaying the values of a bounding box is part of the Utilities Subsystem and implements the
EventListener interface conatined in the Core. It listens to events emitted by the ContextBoundingBox whose instance
reflects at runtime the geographical extent of the underlying model. Once an event is received (invoked for example
through a window resize), the GUI element automatically updates and adjusts itself.

Applications using the OX-Framework
The described flexible architecture allows the development of various applications upon the OX-Framework. Thus,
the different Service Adapters which have already been implemented for specific OGC Web Service types. In the
following some of the developed applications built on top of the OX-Framework are described.

Thin SOS Client
This application provides access to sensor data via the user interface of a thin web client runnable in a common Web
browser. The client can be used to access and display data gathered by in-situ sensors and served by a Sensor
Observaion Service. It allows the user to display time series in form of diagrams or tables and offers additionally the
functionality to export the presentation of the data as PDF, Excel or CSV files. Typically, this application is linked and
invoked by a web mapping client displaying the position of sensors or features of interest for which observations are
hosted by an SOS.
The architecture of this application, as outlined in fig. 5, is divided into two parts: an HTML/AJAX frontend and a
server component which is built upon the OX-Framework. The server component acts like a façade to a Sensor
Observation Service. This façade server forwards the requests of the HTML frontend to the SOS. The returning SOS
responses are parsed and translated by the façade server.
The client, as shown in fig. 6, can be used to display time series from SOS instances compliant to the specification
version 1.0.0 serving sensor data in the format defined by Observations & Measurements (also in version 1.0.0). Due

Fig. 3: Plugin Mechanism

Fig. 4: Example use of the Listener Concept

to this fact it is possible to do visual analysis on sensor data hosted by different SOS instances. Sensor observations of
different phenomena (e.g. temperature, precipitation and barometric pressure) can be compared. For each phenomenon
a separate scale bar is drawn by the client.
The actual time span to be analysed is defined by a start and an end date. This can be done in two ways, entering the
dates manually or choosing it from a calendar. To navigate through the data it is possible to use zoom in and zoom out

functions. Also, the functionality to browse thruogh time
is offered by the client. To store the current view the
application is parameterized and a uniquely identifying
URL of the current state can be retrieved to share the view
with other users. Additionally the data of the current view
can be downloaded as a spreadsheet, a CSV formated file,
or PDF format.
Future developments of this project focus on improving
the performance, stability, and usability of the application.

This includes a major adjustment of the current architectural design as well as the migration to a new rendering library
on the server side. This redesign moves the process of sensor data rendering from the AJAX component to the server
backend of the system. This new approach is chosen because the amount of sensor data which needs to be processed
can be huge (e.g. four time series for each hours of a month: 4 * 24 * 30 = 2880 data points) and took the javascript
rendering engine to its limits.

uDig Plugin
uDig is a Desktop GIS written in Java and based on the eclipse platform. It is a free and open source software project
driven by Refractions Research (http://udig.refractions.net/). This application adds the ability to the uDig system to
access sensor data served by Sensor Observation Services. On the one hand this application allows access of the
features of interest observed by the sensors of an SOS. Those features can be displayed in the map view by adding a
new layer to uDig. On the other hand it is possible to visualized the observation data served by the SOS in a table view
as shown in fig. 7.
In fig. 8 an overview of the architectural design of the application is given. The OX-Framework is used to build the
uDig plugin. The functionalities to access the SOS, unmarshal queried data and render visualizations are provided by
the framework and reused by the application.
Future steps in the development of this project are the implementation of temporal filter mechanisms. This will enable
the users to visualize data for specified time spans.

Fig. 5: Thin SOS client and the OX-Framework

Fig. 6: Thin SOS client

https://docs.google.com/File?id=dg358rdv_29f9hvzdf5_b

Web Map Server
This application conforms to the Web Map Server (WMS) interface specification (De la Beaujadiere 2006). It
transforms WMS requests to SOS requests and returns sensor data visualizations to the WMS client. The application
realizes an opaque service chaining. The figure below shows the principle of this application.

Fig. 7: uDig plugin

Fig. 8: uDig Plugin and the OX-Framework

Fig. 9: WMS Frontend

Conclusion
The OX-Framework which was presented in this paper has gained maturity over the past few years and provides a
solid foundation for developing OGC-related software. It offers a powerful framework that facilitates the
implementation of any kind of application that needs to interact with OGC compliant web services ranging from
conventional portrayal or data access services like the Web Mapping Service or the Web Coverage Service to the suite
of web service standards belonging to the Sensor Web Enablement suite of standards.
Within various sensor web projects, such as SoKNOS (http://www.soknos.de) or the EU-funded OSIRIS
(http://www.osiris-fp6.eu) project, the OX-Framework has been applied in heterogeneous scenarios that pose different
requirements to the functionality of client applications. Furthermore, in the last few months several applications in
productive environments have been built relying on the OX-Framework. An example is a web based time series client
for accessing water level data for all German waterways which was developed for the German Federal Waterways
Engineering and Research Institute (http://www.baw.de).
The future development of the OX-Framework will comprise the extension of its functionality by enabling the use of
web based processing services coverage handling and the creation of additional Service Adapters. In addition it is
expected that further applications using the OX-Framework will be created. For example it is planned to investigate on
how further GIS software systems can be SWE- enabled by using the OX-Framework.
In summary the OX-Framework is a powerful framework which significantly facilitates the development of OGC
based applications by hiding the complexity of the different OGC standards from the individual developers. As a
result the development of customized applications, individually tailored to the need of specific users or use cases
becomes possible at much lower costs.

References
Botts, M., G. Percivall, C. Reed & J. Davidson (2007). OGC Sensor Web Enablement : Overview and High Level

Architecture. OGC Whitepaper. OGC Document Number : 07-165.

Botts, M. & A. Robin (2007). OpenGIS Sensor Model Language (SensorML) Implementation Specification. OpenGIS
Implementation Specification. OGC Document Number : 07-000.

Cox, S. (2007). Observations and Measurements – Part 1 – Observation schema. OpenGIS Implementation Standard.
OGC Document Number : 07-022r1.

De La Beaujadiere (2006). OpenGIS Web Map Server Implementation Specification. OpenGIS Implementation
Specification. OGC Document Number : 06-042.

Havens, S. (2007) OpenGIS Transducer Markup Language (TML) Implementation Specification. OpenGIS
Implementation Specification. OGC Document Number 06-010r6.

Humblet, J.-P. (2003). Web Map Context Documents. OGC Implementation Specification. OGC Document Number:
03-036r2.

Kiehle, C., K. Greve & C. Heier (2006). Standardized Geoprocessing - Taking Spatial Data Infrastructures one Step
Further. Proceedings AGILE 2006. 9th AGILE International Conference on Geographic Information Science:
273–282. Visegrad, Hungary.

Kottman, C. (1999). The OpenGIS™ Abstract Specification Topic 5: Features (Version 4). OGC Abstract
Specification. OGC Document Number: 99-105r2

Kraak, M.-J., A. Sliwinski & A. Wytzisk (2005). What happens at 52N? An Open source approach to education and
research. Joint ICA commission seminar 6.-8. July 2005, part of the 22nd ICA conference, ICC 2005: Mapping
approaches into a changing world, 2005, 16-20.

Na, A. & M. Priest (2007). Sensor Observation Service – Implementation Specification Version 1.0.0. OGC
Implementation Specification. OGC Document Number: 06-009r6.

Reynolds, G. (2005). GO-1 Application Objects. OGC Implementation Specification. OGC Document Number: 03-
064r10.

Simonis, I. (2006). OGC Sensor Alert Service Candidate Implementation Specification. OpenGIS Best Practices. OGC
Document Number: 06-028r3.

Simonis, I. (2007). OpenGIS Sensor Planning Service Implementation Specification. OpenGIS Implementation
Specification. OGC Document Number: 07-014r3.

Simonis, I. & J. Echterhoff (2006). Draft OpenGIS Web Notification Service Implementation Specification. OpenGIS
Best Practices Paper. OGC Document Number: 06-095.

Sliwinski, A., I. Simonis et al. (2005). Boosting the OGC Sensor Web Enablement Initiative by Open Source Web
Services – The Case of 52°North. AGIT 2005, July 6 - 8, 2005.

Tillman, S. & J. Garnett. (2006). OWS Integrated Client Architecture, Design, and Experience. OGC Discussion
Paper. OGC Document Number: 05-116.

Whiteside, A. (2005). OGC Web Services Common Specification. OGC Implementation Specification. OGC
Document Number: 05-008.

	Development of Sensor Web Applications with Open Source Software
	Abstract
	Introduction
	The OX-Framework
	Applications using the OX-Framework
	Thin SOS Client
	uDig Plugin
	Web Map Server

	Conclusion
	References

