
The Sensor Bus – Integrating Geosensors and the Sensor Web

Arne BRÖRING
1
, Simon JIRKA

1
, Theodor FOERSTER

2

1
52°North, Muenster, Germany

broering@52north.org, jirka@52north.org

2
 Institute for Geoinformatics – University of Muenster, Germany

theodor.foerster@uni-muenster.de

Abstract

In the past, a multitude of projects have demonstrated the applicability of OGC’s Sensor

Web Enablement (SWE) standards. SWE services have been used to encapsulate

heterogeneous geosensors for web-based discovery, access, tasking, and alerting. Thereby,

the integration of geosensors had to be established by manually adapting each SWE

service implementation. This approach is cumbersome and leads to an extensive

integration effort in large scale sensor network systems. To overcome these obstacles this

work presents the Sensor Bus, an open source project facilitating the integration of new

geosensors into the Sensor Web.

Motivation

Geosensors have become an important technology for monitoring environmental phenomena such

as wind, rain, floods or earthquakes. Scenarios in which geosensor networks can be utilized

include early warning systems, hazard management or precision agriculture [1]. To benefit from

the enhanced data acquisition by geosensor networks and to maximize the information

effectiveness in environmental decisions a coupling of available sensor data with other spatio-

temporal resources (e.g. maps) is required. Integrating geosensor networks on the application level

is ensured by the standards framework of the Sensor Web Enablement (SWE) [2] initiative of the

OGC.

But there are obstacles in the current way of integrating sensors and sensor data into the Sensor

Web. Generally, the Sensor Web as established by the SWE initiative which focuses on interacting

with the upper application level. The interaction with the lower sensor network level is not yet

sufficiently described. Hence, there is a gap between these two layers.

In various projects, the SWE framework
1
 has been applied to enable the interoperable usage of

geosensor networks. The industrial fire scenario, which has been part of the EC-funded project

OSIRIS
2
, exemplarily shows the existence of the gap between the two layers. The use case [3]

includes three types of sensors, smoke detectors, cameras and thermometers, to detect fires in

industrial facilities. On the Sensor Web level three services are involved. The Sensor Observation

Service (SOS) is used to access data gathered by the different sensors. The tasking of sensors to

modify internal parameters can be achieved via the Sensor Planning Service (SPS). To allow users

a subscription for certain alerts and events (e.g. detection of smoke) the Sensor Alert Service

(SAS) is applied.

The communication between sensors and their sensor network gateway is realized by a proprietary

protocol based on ZigBee. The Sensor Web on the other hand is based on internet protocols. The

SWE services encapsulate the sensor network and hide the lower level protocols. The connection

1
 http://www.ogcnetwork.net/swe

2
 http://www.osiris-fp6.eu/

between the two layers is established by manually adapting the services to the specific sensor

types. Those proprietary bridges have to be built for each pair of web service implementation and

sensor type. This approach is contrary to our aim of reaching interoperability and sustainable

software development. Further on, it leads to an extensive amount of adaption effort which is the

key cost factor in large-scale sensor network developments [4].

Coherent concepts are missing for an intermediary layer to connect the two distinct layers by

guaranteeing a sufficient performance and simultaneously ensuring a high level of adaptivity for

diverse sensor types. The open source project presented in this work tackles these obstacles by

establishing such an intermediary layer, the Sensor Bus. It bridges the gap between sensor network

layer and Sensor Web layer by realizing a set of interaction patterns between the two distinct

layers [5].

The Sensor Bus Approach

Fig. 1 depicts the components of the Sensor Bus. A client located on the application layer invokes

a SWE service for a specific functionality such as the retrieval of sensor observations or the

submission of a sensor task. The Sensor Bus maintains associations to these services as well as

associations to sensor gateways which provide access to connected sensors. The sensor gateway

establishes the communication between its associated sensors and the upper layer. From a

hardware perspective, sensor gateway and sensor may merge in certain scenarios to a single

component (e.g., a weather station which comprises multiple sensors and is equipped with an

advanced computing unit acting as the gateway to the associated sensors).

Figure 1: Overview of Sensor Bus concept

The Sensor Bus follows the Message Bus pattern [6] and incorporates a common communication

infrastructure, a shared set of adapter interfaces, and a well-defined message protocol.

The communication is established through a publish/subscribe mechanism [7]. Services as well as

sensors can publish messages to the Sensor Bus. Also, these components can subscribe to the

Sensor Bus to receive messages using push-based communication. The Sensor Bus forwards the

posted messages to all subscribed components. The different components (i.e., sensors and SWE

services) can subscribe and publish through interfaces defined by the Sensor Bus. For these

interfaces, pluggable adapters can be developed by sensor vendors or service providers. The

adapters convert the service or sensor specific communication protocol to the internal protocol of

the Sensor Bus. Other than physical buses, used for example in computer hardware, the Sensor

Bus is a logical bus and reflects a bus topology to external components (sensors and services).

Figure 1: Sensor Bus architecture

Fig. 2 shows the architecture of the Sensor Bus as a UML class diagram. The

SensorAdapter (e.g., an adapter for the SunSPOT
3
 sensor platform) and the

ServiceAdapter (e.g., adapters for SOS and SPS) are used to connect sensors and services

to the Sensor Bus. Both interfaces are BusListeners so that they can be notified by the

BusMessageReceiver for retrieving messages sent over the bus. SensorAdapter and

ServiceAdapter transmit their messages to the bus through the BusMessageSender.

BusMessageReceiver and BusMessageSender offer an interface that abstracts from the

underlying communication infrastructure of the bus. The XMPPConnector in Fig. 2 is an

example implementation of the two interfaces to realize the Sensor Bus based on an

XMPP
4
 server. Since the two interfaces abstract from the communication infrastructure, it

is easy to exchange the implementing class and realize the Sensor Bus based on other

messaging technologies (e.g., IRC or JMS). The implementation of BusMessageReceiver

calls in case of an incoming message onMessage() to notify the listeners. The concrete

sensor and service adapters, acting as listeners, analyze the incoming message and react

on it according to their specifications.

Conclusions and Future Work

In this paper, we introduce the concept of an intermediary layer, the Sensor Bus, to close

the gap between the sensor network layer and the Sensor Web layer. Due to the simplicity

of the bus protocol, an integration of new sensors into the Sensor Web becomes very easy.

3
 http://www.sunspotworld.com

4
 http://www.xmpp.org

 class Class Model

«interface»

BusMessageReceiv er

addListener(BusListener)

onMessage(Object)

SOSAdapterSunSPOTSensor

«interface»

BusListener

notify(Message)

«interface»

SensorAdapter

«interface»

Serv iceAdapter

«interface»

BusMessageSender

sendMessage(Message)

SPSAdapter

XMPPConnector

notifies

1

listen to

1

usesuses1

listen to

1

This decreases the entry threshold for sensor vendors to bring their devices into the

interoperable Sensor Web.

Also, the approach of an underlying message bus allows an automatic notification of SWE

services about changes in the sensor network. So far, new data or changed metadata has to

be communicated separately to the various SWE services which may quickly lead to data

inconsistency within the Sensor Web.

The presented architecture of the Sensor Bus will be brought into the standardization

process of the SWE initiative at the OGC. Also, 52° North will use the Sensor Bus in the

upcoming OGC Web Services testbed (OWS-7).

The Sensor Bus is published as an open source project
5
 within the 52° North Sensor Web

community
6
. The implementation shows the applicability of the approach, but also

exposes working packages for the future. The technological mechanisms for true sensor

plug & play will be developed based on the described concepts. Current work in progress

is a SensorML
7
 profile defining a generic driver interface to automatically create the

communication logic for adapting sensors to the Sensor Bus. Soon, the approach will be

applied to the existing water gage network of the regional German watershed monitoring

agency Wupperverband to demonstrate its applicability in real-world scenarios.

References

[1] D. Shepherd and S. Kumar, Distributed Sensor Networks. Chapman & Hall, 2005, ch. Microsensor

Applications.

[2] M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC (R) Sensor Web Enablement: Overview

and High Level Architecture,” Lecture Notes In Computer Science, vol. 4540, pp. 175–190, 2008.

[3] S. Jirka, A. Bröring, and C. Stasch, “Discovery Mechanisms for the Sensor Web,” Sensors, vol. 9,

2009.

[4] K. Aberer, M. Hauswirth, and A. Salehi, “Middleware support for the Internet of Things,” 5.

GI/ITG KuVS Fachgespraech - Drahtlose Sensornetze, pp. 15 – 19, 2006.

[5] A. Broering, T. Foerster, and S. Jirka, “Interaction Patterns for Bridging the Gap between Sensor

Networks and the Sensor Web,” in WoT 2010: First International Workshop on the Web of Things,

Mannheim, Germany, March 29. - April 2. 2010; forthcoming.

[6] G. Hohpe and B. Woolf, Enterprise integration patterns: Designing, building, and deploying

messaging solutions. Boston, MA, USA: Addison-Wesley Longman Publishing, 2003.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Resusable Object-

Oriented Software. Addison-Wesley Professional, 1995.

5
 http://www.52north.org/sensorBus

6
 http://www.52north.org/swe

7
 http://www.ogcnetwork.net/sensorml

